## Contents

| Prefe |         | page                                                        | 2 XV |
|-------|---------|-------------------------------------------------------------|------|
| Ackn  | owledge | ements                                                      | xxi  |
| Note. | s on Un | its, Scales and Conventions                                 | xiv  |
| Part  | one: 7  | Thinking About the Material World                           | 1    |
| 1.    | Ideali  | zing Material Response                                      | 3    |
| 1.1   | A Mat   | erial World                                                 | 3    |
|       | 1.1.1   | Materials: A Databook Perspective                           | 3    |
|       | 1.1.2   | The Structure–Properties Paradigm                           | 8    |
|       | 1.1.3   | Controlling Structure: The World of Heat and Beat           | 12   |
| 1.2   | Model   | ing of Materials                                            | 14   |
|       | 1.2.1   | The Case for Modeling                                       | 14   |
|       | 1.2.2   | Modeling Defined: Contrasting Perspectives                  | 15   |
|       | 1.2.3   | Case Studies in Modeling                                    | 18   |
|       | 1.2.4   | Modeling and the Computer: Numerical Analysis vs Simulation | 25   |
| 1.3   | Furthe  | r Reading                                                   | 26   |
| 2     | Conti   | nuum Mechanics Revisited                                    | 29   |
| 2.1   | Contin  | nuum Mechanics as an Effective Theory                       | 29   |
| 2.2   | Kinem   | natics: The Geometry of Deformation                         | 31   |
|       | 2.2.1   | Deformation Mappings and Strain                             | 32   |
|       | 2.2.2   | Geometry of Rigid Deformation                               | 35   |
|       | 2.2.3   | Geometry of Slip and Twinning                               | 36   |
|       | 2.2.4   | Geometry of Structural Transformations                      | 37   |
| 2.3   | Forces  | and Balance Laws                                            | 39   |
|       | 2.3.1   | Forces Within Continua: Stress Tensors                      | 39   |
|       | 2.3.2   | Equations of Continuum Dynamics                             | 41   |
|       | 2.3.3   | Configurational Forces and the Dynamics of Defects          | 44   |
| 2.4   | Contin  | nuum Descriptions of Deformation and Failure                | 51   |
|       | 2.4.1   | Constitutive Modeling                                       | 51   |

viii *Contents* 

|     | 2.4.2    | Linear Elastic Response of Materials                                          | 51               |
|-----|----------|-------------------------------------------------------------------------------|------------------|
|     | 2.4.3    | Plastic Response of Crystals and Polycrystals                                 | 54               |
|     | 2.4.4    | Continuum Picture of Fracture                                                 | 60               |
| 2.5 | Boundar  | ry Value Problems and Modeling                                                | 64               |
| 2.0 | 2.5.1    | Principle of Minimum Potential Energy and Reciprocal                          |                  |
|     |          | Theorem                                                                       | 64               |
|     | 2.5.2    | Elastic Green Function                                                        | 66               |
|     | 2.5.3    | Method of Eigenstrains                                                        | 69               |
|     | 2.5.4    | Numerical Solutions: Finite Element Method                                    | 72               |
| 2.6 |          | ties with the Continuum Approach                                              | 75<br>76         |
| 2.7 |          | Reading                                                                       | 76<br><b>7</b> 6 |
| 2.8 | Probler  |                                                                               | 78               |
|     |          |                                                                               | 81               |
| 3   |          | um and Statistical Mechanics Revisited                                        | 81               |
| 3.1 | Backgr   |                                                                               | 82               |
| 3.2 |          | m Mechanics                                                                   | 82               |
|     | 3.2.1    |                                                                               | 87               |
|     | 3.2.2    | Catalog of Important Solutions                                                | 94               |
|     | 3.2.3    | Finite Elements and Schrödinger<br>Quantum Corrals: A Finite Element Analysis | 101              |
|     | 3.2.4    |                                                                               | 103              |
|     | 3.2.5    | Quantum Mechanics of Bonding                                                  | 109              |
|     | 3.2.6    |                                                                               | 115              |
| 3.3 |          | ical Mechanics                                                                | 115              |
|     | 3.3.1    | Background Entropy of Mixing                                                  | 119              |
|     | 3.3.2    | The Canonical Distribution                                                    | 122              |
|     | 3.3.3    | Information Theoretic Approach to Statistical Mechanics                       | 126              |
|     | 3.3.4    | Statistical Mechanics Models for Materials                                    | 129              |
|     | 3.3.5    | The Deceliphon Inequality                                                     | 135              |
|     | 3.3.6    | TI Vincenatios of Order                                                       | 137              |
|     | 3.3.7    | Computational Statistical Mechanics                                           | 139              |
| 2 / | 3.3.8    | der Reading                                                                   | 142              |
| 3.4 |          |                                                                               | 144              |
| 3.5 | ) Prob   | lems                                                                          |                  |
| Pa  | art two: | <b>Energetics of Crystalline Solids</b>                                       | 147              |
|     |          | rgetic Description of Cohesion in Solids                                      | 149              |
| 4   | The      | Role of the Total Energy in Modeling Materials                                | 149              |
| 4.  | 1 The    | ceptual Backdrop for Characterizing the Total Energy                          | 152              |
| 4.  | 2 Con    | Atomistic and Continuum Descriptions Contrasted                               | 152              |
|     | · +. /   | I ADDIAGNOUS STATE                                                            |                  |

Contents ix

|     | 4.2.2   | The Many-Particle Hamiltonian and Degree of Freedom         |     |
|-----|---------|-------------------------------------------------------------|-----|
|     |         | Reduction                                                   | 154 |
| 4.3 | Pair Po | otentials                                                   | 156 |
|     | 4.3.1   | Generic Pair Potentials                                     | 156 |
|     | 4.3.2   | Free Electron Pair Potentials                               | 158 |
| 4.4 | Potent  | ials with Environmental and Angular Dependence              | 164 |
|     | 4.4.1   | Diagnostics for Evaluating Potentials                       | 164 |
|     | 4.4.2   | Pair Functionals                                            | 165 |
|     | 4.4.3   | Angular Forces: A First Look                                | 172 |
| 4.5 | Tight-  | Binding Calculations of the Total Energy                    | 176 |
|     | 4.5.1   | The Tight-Binding Method                                    | 176 |
|     | 4.5.2   | An Aside on Periodic Solids: k-space Methods                | 184 |
|     | 4.5.3   | Real Space Tight-Binding Methods                            | 189 |
| 4.6 | First-F | Principles Calculations of the Total Energy                 | 197 |
|     | 4.6.1   | Managing the Many-Particle Hamiltonian                      | 198 |
|     | 4.6.2   | Total Energies in the Local Density Approximation           | 200 |
| 4.7 | Choos   | ing a Description of the Total Energy: Challenges and       |     |
|     | Conun   | drums                                                       | 203 |
| 4.8 | Furthe  | r Reading                                                   | 204 |
| 4.9 | Proble  | ems                                                         | 206 |
| 5   | Thern   | nal and Elastic Properties of Crystals                      | 210 |
| 5.1 |         | nal and Elastic Material Response                           | 210 |
| 5.2 | Mecha   | anics of the Harmonic Solid                                 | 213 |
|     | 5.2.1   | Total Energy of the Thermally Fluctuating Solid             | 214 |
|     | 5.2.2   | Atomic Motion and Normal Modes                              | 216 |
|     | 5.2.3   | Phonons                                                     | 228 |
|     | 5.2.4   | Buckminsterfullerene and Nanotubes: A Case Study in         |     |
|     |         | Vibration                                                   | 229 |
| 5.3 | Therm   | nodynamics of Solids                                        | 231 |
|     | 5.3.1   | Harmonic Approximation                                      | 231 |
|     | 5.3.2   | Beyond the Harmonic Approximation                           | 239 |
| 5.4 | Model   | ling the Elastic Properties of Materials                    | 244 |
|     | 5.4.1   | Linear Elastic Moduli                                       | 244 |
|     | 5.4.2   | Nonlinear Elastic Material Response: Cauchy–Born Elasticity | 248 |
| 5.5 |         | er Reading                                                  | 250 |
| 5.6 | Proble  | ems                                                         | 251 |
| 6   | Struct  | tural Energies and Phase Diagrams                           | 253 |
| 6.1 |         | ures in Solids                                              | 253 |
| 6.2 | Atomi   | c-Level Geometry in Materials                               | 254 |

| 6.3   | Structu  | ral energies of solids                       |                 | 260 |
|-------|----------|----------------------------------------------|-----------------|-----|
|       | 6.3.1    | Pair Potentials and Structural Stability     |                 | 261 |
|       | 6.3.2    | Structural Stability in Transition Metals    |                 | 264 |
|       | 6.3.3    | Structural Stability Reconsidered: The Case  | of Elemental Si | 265 |
| 6.4   | Elemen   | ital Phase Diagrams                          |                 | 268 |
|       | 6.4.1    | Free Energy of the Crystalline Solid         |                 | 268 |
|       | 6.4.2    | Free Energy of the Liquid                    |                 | 275 |
|       | 6.4.3    | Putting It All Together                      |                 | 277 |
|       | 6.4.4    | An Einstein Model for Structural Change      |                 | 278 |
|       | 6.4.5    | A Case Study in Elemental Mg                 |                 | 280 |
| 6.5   | Alloy l  | Phase Diagrams                               |                 | 282 |
|       | 6.5.1    | Constructing the Effective Energy: Cluster I |                 | 283 |
|       | 6.5.2    | Statistical Mechanics for the Effective Ham  |                 | 291 |
|       | 6.5.3    | The Effective Hamiltonian Revisited: Rela    | axations and    |     |
|       |          | Vibrations                                   |                 | 297 |
|       | 6.5.4    | The Alloy Free Energy                        |                 | 299 |
|       | 6.5.5    | Case Study: Oxygen Ordering in High $T_C$ S  | Superconductors | 300 |
| 6.6   | Summ     | ary                                          |                 | 304 |
| 6.7   | Furthe   | r Reading                                    |                 | 304 |
| 6.8   | Proble   | ems                                          |                 | 305 |
|       |          |                                              |                 |     |
| Par   | t three: | Geometric Structures in Solids: Defec        | ets and         | 200 |
| Mi    | crostru  | ctures                                       |                 | 309 |
| 7     | Point    | Defects in Solids                            |                 | 311 |
| 7.1   |          | Defects and Material Response                |                 | 311 |
| , . 1 | 7.1.1    | Material Properties Related to Point Disord  | ler             | 312 |
| 7.2   | Diffu    |                                              |                 | 318 |
| ,     | 7.2.1    | Effective Theories of Diffusion              |                 | 318 |
| 7.3   |          | netries and Energies of Point Defects        |                 | 326 |
|       | 7.3.1    | Crystallographic Preliminaries               |                 | 327 |
|       | 7.3.2    | A Continuum Perspective on Point Defects     | 3               | 328 |
|       | 7.3.3    | Microscopic Theories of Point Defects        |                 | 332 |
|       | 7.3.4    | Point Defects in Si: A Case Study            |                 | 341 |
| 7.4   |          | Defect Motions                               |                 | 344 |
|       | 7.4.1    | Material Parameters for Mass Transport       |                 | 345 |
|       | 7.4.2    | Diffusion via Transition State Theory        |                 | 346 |
|       | 7.4.3    |                                              |                 | 351 |
|       | 7.4.4    |                                              | Si              | 353 |
| 7.5   |          | ct Clustering                                |                 | 356 |

Contents xi

| 7.6 |         | r Reading                                          | 356 |
|-----|---------|----------------------------------------------------|-----|
| 7.7 | Proble  | ems                                                | 359 |
| 8   | Line I  | Defects in Solids                                  | 362 |
| 8.1 | Perma   | nent Deformation of Materials                      | 362 |
|     | 8.1.1   | Yield and Hardening                                | 363 |
|     | 8.1.2   | Structural Consequences of Plastic Deformation     | 365 |
|     | 8.1.3   | Single Crystal Slip and the Schmid Law             | 367 |
| 8.2 | The Id  | eal Strength Concept and the Need for Dislocations | 369 |
| 8.3 | Geom    | etry of Slip                                       | 371 |
|     | 8.3.1   | Topological Signature of Dislocations              | 372 |
|     | 8.3.2   | Crystallography of Slip                            | 375 |
| 8.4 | Elastic | e Models of Single Dislocations                    | 382 |
|     | 8.4.1   | The Screw Dislocation                              | 382 |
|     | 8.4.2   | The Volterra Formula                               | 388 |
|     | 8.4.3   | The Edge Dislocation                               | 391 |
|     | 8.4.4   | Mixed Dislocations                                 | 392 |
| 8.5 | Interac | ction Energies and Forces                          | 393 |
|     | 8.5.1   | The Peach–Koehler Formula                          | 395 |
|     | 8.5.2   | Interactions and Images: Peach-Koehler Applied     | 398 |
|     | 8.5.3   | The Line Tension Approximation                     | 402 |
| 8.6 | Model   | ling the Dislocation Core: Beyond Linearity        | 404 |
|     | 8.6.1   | Dislocation Dissociation                           | 404 |
|     | 8.6.2   | The Peierls-Nabarro Model                          | 406 |
|     | 8.6.3   | Structural Details of the Dislocation Core         | 412 |
| 8.7 | Three-  | -Dimensional Dislocation Configurations            | 415 |
|     | 8.7.1   | Dislocation Bow-Out                                | 416 |
|     | 8.7.2   | Kinks and Jogs                                     | 418 |
|     | 8.7.3   | Cross Slip                                         | 423 |
|     | 8.7.4   | Dislocation Sources                                | 426 |
|     | 8.7.5   | Dislocation Junctions                              | 430 |
| 8.8 | Furthe  | er Reading                                         | 435 |
| 8.9 | Proble  | ems                                                | 437 |
| 9   | Wall    | Defects in Solids                                  | 441 |
| 9.1 | Interfa | aces in Materials                                  | 441 |
|     | 9.1.1   | Interfacial Confinement                            | 442 |
| 9.2 | Free S  | Surfaces                                           | 446 |
|     | 9.2.1   | Crystallography and Energetics of Ideal Surfaces   | 447 |
|     | 9.2.2   | Reconstruction at Surfaces                         | 452 |
|     | 9.2.3   | Steps on Surfaces                                  | 474 |

xii Contents

| 9.3  | Stacking | Faults and Twins                                   |         | 476  |
|------|----------|----------------------------------------------------|---------|------|
|      |          | Structure and Energetics of Stacking Faults        |         | 477  |
|      | 9.3.2    | Planar Faults and Phase Diagrams                   |         | 484  |
| 9.4  | Grain Bo | oundaries                                          |         | 487  |
|      | 9.4.1    | Bicrystal Geometry                                 |         | 489  |
|      |          | Grain Boundaries in Polycrystals                   |         | 492  |
|      | 9.4.3    | Energetic Description of Grain Boundaries          |         | 494  |
|      | 9.4.4    | Triple Junctions of Grain Boundaries               |         | 500  |
| 9.5  | Diffuse  | Interfaces                                         |         | 501  |
| 9.6  | Modelir  | ng Interfaces: A Retrospective                     |         | 502  |
| 9.7  | Further  | Reading                                            |         | 503  |
| 9.8  | Problem  | ns                                                 |         | 505  |
| 10   | Micros   | tructure and its Evolution                         |         | 507  |
| 10.1 |          | ructures in Materials                              |         | 508  |
| 10.1 |          | Microstructural Taxonomy                           |         | 508  |
|      |          | Microstructural Change                             |         | 516  |
|      |          | Models of Microstructure and its Evolution         |         | 519  |
| 10.2 | Inclusio | ons as Microstructure                              |         | 520  |
|      | 10.2.1   | Eshelby and the Elastic Inclusion                  |         | 520  |
|      |          | The Question of Equilibrium Shapes                 |         | 527  |
|      | 10.2.3   | Precipitate Morphologies and Interfacial Energy    |         | 528  |
|      | 10.2.4   | Equilibrium Shapes: Elastic and Interfacial Energy | y       | 529  |
|      | 10.2.5   | A Case Study in Inclusions: Precipitate Nucleation | n       | 537  |
|      | 10.2.6   | Temporal Evolution of Two-Phase Microstructure     | S       | 540  |
| 10.3 | Micros   | structure in Martensites                           |         | 546  |
|      |          | The Experimental Situation                         |         | 547  |
|      |          | Geometrical and Energetic Preliminaries            |         | 551  |
|      |          | Twinning and Compatibility                         |         | 554  |
|      |          | Fine-Phase Microstructures and Attainment          | 1       | 560  |
|      |          | The Austenite-Martensite Free Energy Reconside     | ered    | 565  |
| 10.4 | 4 Micro  | structural Evolution in Polycrystals               |         | 566  |
|      |          | Phenomenology of Grain Growth                      |         | 567  |
|      |          | Modeling Grain Growth                              |         | 568  |
| 10.5 | 5 Micro  | structure and Materials                            |         | 580  |
| 10.0 | 6 Furthe | er Reading                                         |         | 580  |
| 10.  | 7 Proble | ems                                                |         | 582  |
| _    |          | Ender the Multigoole Challenge of Deal Ma          | iterial |      |
|      |          | Facing the Multiscale Challenge of Real Ma         | ica iai | 585  |
| Be   | havior   |                                                    |         | 2 32 |

Contents xiii

| 11   | Points,  | Lines and Walls: Defect Interactions and Material Response  | 587 |
|------|----------|-------------------------------------------------------------|-----|
| 11.1 | Defect 1 | Interactions and the Complexity of Real Material Behavior   | 587 |
| 11.2 | Diffusio | on at Extended Defects                                      | 588 |
|      | 11.2.1   | Background on Short-Circuit Diffusion                       | 588 |
|      | 11.2.2   | Diffusion at Surfaces                                       | 589 |
| 11.3 | Mass T   | ransport Assisted Deformation                               | 592 |
|      | 11.3.1   | Phenomenology of Creep                                      | 593 |
|      | 11.3.2   | Nabarro-Herring and Coble Creep                             | 595 |
| 11.4 | Disloca  | tions and Interfaces                                        | 599 |
|      | 11.4.1   | Dislocation Models of Grain Boundaries                      | 600 |
|      | 11.4.2   | Dislocation Pile-Ups and Slip Transmission                  | 604 |
| 11.5 | Cracks   | and Dislocations                                            | 609 |
|      | 11.5.1   | Variation on a Theme of Irwin                               | 610 |
|      | 11.5.2   | Dislocation Screening at a Crack Tip                        | 611 |
|      | 11.5.3   | Dislocation Nucleation at a Crack Tip                       | 615 |
| 11.6 | Disloca  | ations and Obstacles: Strengthening                         | 620 |
|      | 11.6.1   | Conceptual Overview of the Motion of Dislocations Through   |     |
| ¥.   |          | a Field of Obstacles                                        | 622 |
|      | 11.6.2   | The Force Between Dislocations and Glide Obstacles          | 625 |
|      | 11.6.3   | The Question of Statistical Superposition                   | 628 |
|      | 11.6.4   | Solution Hardening                                          | 633 |
|      | 11.6.5   | Precipitate Hardening                                       | 636 |
|      | 11.6.6   | Dislocation–Dislocation Interactions and Work Hardening     | 642 |
| 11.7 | Further  | Reading                                                     | 644 |
| 11.8 | Probler  | ms                                                          | 647 |
| 12   | Reidai   | ng Scales: Effective Theory Construction                    | 649 |
| 12.1 |          | ns Involving Multiple Length and Time Scales                | 651 |
| 12.1 |          | Problems with Multiple Temporal Scales: The Example of      | 051 |
|      | 12,1,1   | Diffusion                                                   | 652 |
|      | 12 1 2   | Problems with Multiple Spatial Scales: The Example of       | 052 |
|      | 12.1.2   | Plasticity                                                  | 653 |
|      | 12 1 3   | Generalities on Modeling Problems Involving Multiple Scales | 655 |
| 12.2 |          | c Examples of Multiscale Modeling                           | 658 |
| 12.3 |          | ve Theory Construction                                      | 668 |
| 12.3 |          | Degree of Freedom Selection: State Variables, Order         | 000 |
|      |          | Parameters and Configurational Coordinates                  | 669 |
|      |          | Dynamical Evolution of Relevant Variables: Gradient Flow    | 00) |
|      | i        | Dynamics and Variational Principles                         | 674 |
|      | 12.3.3   |                                                             |     |
|      | 12.3.3   | Inhomogeneous Systems and the Role of Locality              | 685 |

xiv Contents

| 12.3.5 Effective Hamiltonians                                     | 701    |
|-------------------------------------------------------------------|--------|
| 10.4 D. 1.1 Carles in Misses structural Evolution                 |        |
| 12.4 Bridging Scales in Microstructural Evolution                 | 701    |
| 12.4.1 Hierarchical Treatment of Diffusive Processes              | 701    |
| 12.4.2 From Surface Diffusion to Film Growth                      | 709    |
| 12.4.3 Solidification Microstructures                             | 711    |
| 12.4.4 Two-Phase Microstructures Revisited                        | 715    |
| 12.4.5 A Retrospective on Modeling Microstructural Evolution      | 718    |
| 12.5 Bridging Scales in Plasticity                                | 719    |
| 12.5.1 Mesoscopic Dislocation Dynamics                            | 720    |
| 12.5.2 A Case Study in Dislocations and Plasticity: Nanoindentati | on 728 |
| 12.5.3 A Retrospective on Modeling Plasticity Using Dislocation   |        |
| Dynamics                                                          | 731    |
| 12.6 Bridging Scales in Fracture                                  | 732    |
| 12.6.1 Atomic-Level Bond Breaking                                 | 732    |
| 12.6.2 Cohesive Surface Models                                    | 734    |
| 12.6.3 Cohesive Surface Description of Crack Tip Dislocation      |        |
| Nucleation                                                        | 735    |
| 12.7 Further Reading                                              | 736    |
| 12.8 Problems                                                     | 738    |
| 13 Universality and Specificity in Materials                      | 742    |
| 13.1 Materials Observed                                           | 743    |
| 13.1.1 What is a Material: Another Look                           | 743    |
| 13.1.2 Structural Observations                                    | 744    |
| 13.1.3 Concluding Observations on the Observations                | 746    |
| 13.2 How Far Have We Come?                                        | 748    |
| 13.2.1 Universality in Materials                                  | 749    |
| 13.2.2 Specificity in Materials                                   | 750    |
| 13.2.3 The Program Criticized                                     | 751    |
| 13.3 Intriguing Open Questions                                    | 752    |
| 13.4 In Which the Author Takes His Leave                          | 754    |
| References                                                        | 757    |
| Index                                                             | 771    |