CONTENTS | Preface | | |---|--| | Chapter 1 BACKGROUND | | | 1.1 Classifiers as Partitions 1.2 Use of Data in Constructing Classifiers 1.3 The Purposes of Classification Analysis 1.4 Estimating Accuracy 1.5 The Bayes Rule and Current Classification Procedures | | | Chapter 2 INTRODUCTION TO TREE CLASSIFICATION | | | 2.1 The Ship Classification Problem 2.2 Tree Structured Classifiers 2.3 Construction of the Tree Classifier 2.4 Initial Tree Growing Methodology 2.5 Methodological Development 2.6 Two Running Examples 2.7 The Advantages of the Tree Structured Approach | | | Chapter 3 RIGHT SIZED TREES AND HONEST ESTIMATES | | | 3.1 Introduction 3.2 Getting Ready to Prune 3.3 Minimal Cost-Complexity Pruning 3.4 The Best-Pruned Subtree: An Estimation Problem 3.5 Some Examples | | viii | vi | | Contents | |---|---|--| | Chan | ton A CDI ITTING DUE D | doncenes | | Chap | ter 4 SPLITTING RULES | 93 | | 4.1
4.2
4.3
4.4
4.5
4.6 | Wild variable Mindelassinical IIII (III) | 94
98
103
112
115
121
126 | | Chap | ter 5 STRENGTHENING AND INTERPRETING | 130 | | 5.1
5.2
5.3
5.4
5.5
5.6
5.7 | Introduction Variable Combinations Surrogate Splits and Their Uses Estimating Within-Node Cost Interpretation and Exploration Computational Efficiency Comparison of Accuracy with Other Methods Appendix | 130
131
140
150
155
163
168
171 | | Chap | ter 6 MEDICAL DIAGNOSIS AND PROGNOSIS | 174 | | 6.1
6.2
6.3
6.4
6.5 | Prognosis After Heart Attack
Diagnosing Heart Attacks
Immunosuppression and the Diagnosis of Cancer
Gait Analysis and the Detection of Outliers
Related Work on Computer-Aided Diagnosis | 175
182
189
194
201 | | Chap | ter 7 MASS SPECTRA CLASSIFICATION | 203 | | 7.1
7.2
7.3 | Generalized Tree Construction | 203
205
205 | | Chap | ter 8 REGRESSION TREES | 216 | | 8.1
8.2
8.3
8.4
8.5
8.6
8.7 | Introduction An Example Least Squares Regression Tree Structured Regression Pruning and Estimating A Simulated Example Two Cross-Validation Issues Standard Structure Trees | 216
217
221
228 | | Conte | ents | vii | |--------------------------------------|---|--| | 8.11 | Using Surrogate Splits Interpretation Least Absolute Deviation Regression Overall Conclusions | 248
251
255
264 | | Chapt | ter 9 BAYES RULES AND PARTITIONS | 266 | | 9.1
9.2
9.3
9.4 | Bayes Rule
Bayes Rule for a Partition
Risk Reduction Splitting Rule
Categorical Splits | 266
269
272
274 | | Chapt | cer 10 OPTIMAL PRUNING | 279 | | 10.2 | Tree Terminology
Optimally Pruned Subtrees
An Explicit Optimal Pruning Algorithm | 279
284
293 | | Chapt | ter 11 CONSTRUCTION OF TREES FROM A LEARNING SAMPLE | 297 | | 11.3
11.4
11.5
11.6
11.7 | Estimated Bayes Rule for a Partition Empirical Risk Reduction Splitting Rule Optimal Pruning Test Samples Cross-Validation Final Tree Selection Bootstrap Estimate of Overall Risk End-Cut Preference | 298
300
302
303
306
309
311
313 | | Chapt | ter 12 CONSISTENCY | 318 | | 12.2
12.3
12.4
12.5 | Empirical Distributions Regression Classification Proofs for Section 12.1 Proofs for Section 12.2 Proofs for Section 12.3 | 319
321
324
327
332
337 | | Bibl: | iography | 342 | | Notai | tion Index | 347 | | Subje | ect Index | 354 | | | | |